Beweglicher Durchschnitt Faltender Matlab


29 September, 2013 Gleitender Durchschnitt durch Faltung Was ist gleitend Durchschnitt und was ist es gut für Wie ist die gleitende Mittelung durch Faltung durchgeführt Moving Average ist eine einfache Operation, die gewöhnlich verwendet wird, um Rauschen eines Signals zu unterdrücken: Wir setzen den Wert jedes Punktes auf die Durchschnitt der Werte in seiner Nachbarschaft. Nach einer Formel: Hier ist x die Eingabe und y das Ausgangssignal, während die Größe des Fensters w ist, die ungerade sein soll. Die obige Formel beschreibt eine symmetrische Operation: Die Proben werden von beiden Seiten des aktuellen Punktes genommen. Unten ist ein Beispiel aus dem wirklichen Leben. Der Punkt, auf dem das Fenster gelegt wird, ist tatsächlich rot. Werte außerhalb x sind Nullen: Um zu spielen und sehen die Auswirkungen der gleitenden Durchschnitt, werfen Sie einen Blick auf diese interaktive Demonstration. Wie man es durch Faltung erkennt Wie Sie vielleicht erkannt haben, ist die Berechnung des einfachen gleitenden Durchschnittes ähnlich der Faltung: In beiden Fällen wird ein Fenster entlang des Signals geschoben und die Elemente im Fenster zusammengefasst. Also, geben Sie ihm einen Versuch, die gleiche Sache zu tun, indem Sie Faltung. Verwenden Sie die folgenden Parameter: Die gewünschte Ausgabe ist: Als erster Ansatz versuchen wir, was wir durch Faltung des x-Signals durch den folgenden k-Kernel erreichen: Der Ausgang ist genau dreimal größer als der erwartete Wert. Es ist auch ersichtlich, dass die Ausgabewerte die Zusammenfassung der drei Elemente im Fenster sind. Es ist, weil während der Faltung das Fenster entlang geschoben wird, werden alle Elemente in ihm mit einem multipliziert und dann zusammengefasst: yk 1 cdot x 1 cdot x 1 cdot x Um die gewünschten Werte von y zu erhalten. Wird die Ausgabe durch 3 geteilt: Durch eine Formel mit der Teilung: Aber wäre es nicht optimal, die Teilung während der Konvolution zu machen Hier kommt die Idee, indem wir die Gleichung umordnen: So werden wir den folgenden k Kernel verwenden: Auf diese Weise werden wir Erhalten Sie die gewünschte Ausgabe: Im Allgemeinen: wenn wir gleitenden Durchschnitt durch Faltung mit einer Fenstergröße von w machen wollen. Werden wir den folgenden k-Kernel verwenden: Eine einfache Funktion, die den gleitenden Durchschnitt ausführt, ist: Eine Beispielnutzung ist: Ich suche nach einer kleinen Anleitung zur Verwendung von CONVN, um die gleitenden Mittelwerte in einer Dimension auf einer 3D-Matrix zu berechnen. Im bekommen ein wenig gefangen auf dem Spiegeln des Kernels unter der Haube und hoffe jemand könnte in der Lage sein, das Verhalten für mich zu klären. Eine ähnliche Post, die mich immer noch ein wenig verwirrt ist, ist hier: Ich habe tägliche Fluss - und Wetterdaten für eine Wasserscheide an verschiedenen Quellenorten. Die Matrix ist also so, dim 1 (die Zeilen) repräsentieren jeden Standort dim 2 (die Spalten) repräsentieren das Datum dim 3 (die Seiten) repräsentieren die unterschiedliche Art der Messung (Flusshöhe, Durchfluss, Niederschlag usw.) Das Ziel Ist zu versuchen und CONVN verwenden, um einen 21 Tage gleitenden Durchschnitt an jedem Standort, für jeden Beobachtungspunkt für jede Variable zu nehmen. Wie ich es verstehe, sollte ich nur in der Lage sein, einen Kernel wie: Ich habe versucht, herum zu spielen und erstellt einen anderen Kernel, der auch funktionieren sollte (glaube ich) und setzen ker2 als: Die Ergebnisse nicht ganz passen und Im fragen, ob ich die haben Abmessungen hier falsch für den Kernel. Jede Anleitung wird sehr geschätzt. BTW haben Sie einen symmetrischen Kernel, und so sollte das Spiegeln keine Auswirkungen auf die Faltungsausgabe haben. Was Sie angegeben haben, ist ein gleitender Standardkernel, und so sollte die Faltung bei der Suche nach dem gleitenden Durchschnitt funktionieren, wie Sie erwarten. Aber I39m ein wenig verwirrt, weil Sie sagte, die oben doesn39t Arbeit ndash Rayryeng Das ist völlig bis zu Ihnen :). Die Frage, die Sie haben, ist eine gültige (kein Wortspiel beabsichtigt), dass reist eine Menge Leute. Wenn Sie wollen, dass es bleibt, kann ich eine Antwort schreiben, die zusammenfasst, worüber wir gesprochen haben. Wenn Sie Ihre Antwort zurückziehen / löschen möchten, ist das kein Problem. Lassen Sie mich wissen, was Sie wollen ndash rayryeng Nach dem Kontext Ihrer Frage, haben Sie eine 3D-Matrix und Sie wollen den gleitenden Durchschnitt jeder Zeile unabhängig über alle 3D-Scheiben zu finden. Der obige Code sollte funktionieren (der erste Fall). Das gültige Flag gibt jedoch eine Matrix zurück, deren Größe in Bezug auf die Grenzen der Konvolution gültig ist. Werfen Sie einen Blick auf den ersten Punkt der Post, die Sie für weitere Details verbunden. Insbesondere fehlen die ersten 21 Einträge für jede Zeile aufgrund des gültigen Flags. Sein nur, wenn Sie zum 22. Eintrag jeder Reihe erhalten, wird der Faltungskernel vollständig innerhalb einer Reihe der Matrix enthalten und sein von diesem Punkt, wo Sie gültige Resultate erhalten (kein Wortspiel beabsichtigt). Wenn Sie diese Einträge an den Grenzen sehen möchten, dann müssen Sie die gleiche Flagge verwenden, wenn Sie die gleiche Größe Matrix wie die Eingabe oder die volle Flagge (die Standard ist), die Ihnen die Größe der Ausgabe ab der Sie beibehalten möchten beibehalten möchten Die extremsten äußeren Kanten, aber denken Sie daran, dass der gleitende Durchschnitt wird mit einem Bündel von Nullen getan werden und so die ersten 21 Einträge würde nicht sein, was Sie sowieso erwarten. Allerdings, wenn Im Interpretieren, was Sie fragen, dann die gültige Flagge ist, was Sie wollen, aber bedenken, dass Sie 21 Einträge fehlen, um für die Rand Fällen unterzubringen. Alles in allem sollte Ihr Code funktionieren, aber seien Sie vorsichtig, wie Sie die Ergebnisse interpretieren. BTW haben Sie einen symmetrischen Kernel, und so sollte das Spiegeln keine Auswirkungen auf die Faltungsausgabe haben. Was Sie spezifiziert haben, ist ein Standard-Moving-Averaging-Kernel, und so Faltung sollte bei der Suche nach dem gleitenden Durchschnitt arbeiten, wie Sie erwarten. Der Wissenschaftler und Ingenieure Leitfaden für digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Wie der Name andeutet, arbeitet das gleitende Mittelfilter durch Mittelung einer Anzahl von Punkten von dem Eingangssignal, um jeden Punkt im Ausgangssignal zu erzeugen. In Gleichung ist dies geschrieben: Wo ist das Eingangssignal, ist das Ausgangssignal und M ist die Anzahl der Punkte im Mittelwert. Beispielsweise ist bei einem 5-Punkt-Gleitmittelfilter Punkt 80 im Ausgangssignal gegeben durch: Alternativ kann die Gruppe von Punkten aus dem Eingangssignal symmetrisch um den Ausgangspunkt gewählt werden: Dies entspricht der Änderung der Summation in Gl . 15-1 von: j 0 bis M -1, bis: j - (M -1) / 2 bis (M -1) / 2. Zum Beispiel wird in einem 10-Punkt-gleitenden Durchschnittsfilter der Index j. Kann von 0 bis 11 (einseitige Mittelung) oder -5 bis 5 (symmetrische Mittelung) laufen. Symmetrische Mittelung erfordert, dass M eine ungerade Zahl ist. Die Programmierung ist etwas einfacher mit den Punkten auf nur einer Seite, jedoch ergibt sich eine relative Verschiebung zwischen den Eingangs - und Ausgangssignalen. Sie sollten erkennen, dass das gleitende Durchschnittsfilter eine Faltung mit einem sehr einfachen Filterkern ist. Zum Beispiel hat ein 5-Punkt-Filter den Filterkern: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Das heißt, das gleitende Mittelfilter ist eine Faltung Des Eingangssignals mit einem Rechteckimpuls mit einer Fläche von Eins. Tabelle 15-1 zeigt ein Programm zur Implementierung des gleitenden Durchschnittsfilters. Dokumentation tsmovavg output tsmovavg (tsobj, s, lag) gibt den einfachen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Ausgabe tsmovavg (Vektor, s, lag, dim) gibt den einfachen gleitenden Durchschnitt für einen Vektor zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Output tsmovavg (tsobj, e, timeperiod) gibt den exponentiellen gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1). Output tsmovavg (Vektor, e, timeperiod, dim) gibt den exponentiell gewichteten gleitenden Durchschnitt für einen Vektor zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. (2 / (Zeitabschnitt 1)). Ausgabe tsmovavg (tsobj, t, numperiod) gibt den dreieckigen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (Vektor, t, numperiod, dim) gibt den dreieckigen gleitenden Durchschnitt für einen Vektor zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (tsobj, w, Gewichte) gibt den gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Indem Gewichte für jedes Element in dem sich bewegenden Fenster bereitgestellt werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Ausgabe tsmovavg (Vektor, w, Gewichte, dim) gibt den gewichteten gleitenden Durchschnitt für den Vektor zurück, indem Gewichte für jedes Element in dem sich bewegenden Fenster geliefert werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Output tsmovavg (tsobj, m, numperiod) gibt den modifizierten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Ausgabe tsmovavg (Vektor, m, numperiod, dim) gibt den modifizierten gleitenden Durchschnitt für den Vektor zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Dim 8212 Dimension, um auf positive ganze Zahl mit dem Wert 1 oder 2 arbeiten Dimension zu arbeiten, als eine positive Ganzzahl mit einem Wert von 1 oder 2 angegeben. Dim ist ein optionales Eingabeargument, und wenn es nicht als eine Eingabe enthalten ist, die Standardeinstellung Wert 2 wird angenommen. Der Standardwert von dim 2 gibt eine zeilenorientierte Matrix an, wobei jede Zeile eine Variable ist und jede Spalte eine Beobachtung ist. Wenn dim 1. die Eingabe als Spaltenvektor oder spaltenorientierte Matrix angenommen wird, wobei jede Spalte eine Variable und jede Zeile eine Beobachtung ist. E 8212 Indikator für exponentiell gleitenden durchschnittlichen Charaktervektor Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei der Zeitabschnitt der Zeitraum des exponentiellen gleitenden Durchschnitts ist. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1) Zeitintervall 8212 Länge der Zeitperiode nichtnegative Ganzzahl Wählen Sie Ihre CountryUsing MATLAB, wie kann ich die 3-Tage gleitenden Durchschnitt einer bestimmten Spalte einer Matrix finden und den gleitenden Durchschnitt anfügen Auf diese Matrix Ich versuche, die 3-Tage gleitenden Durchschnitt von unten nach oben der Matrix zu berechnen. Ich habe meinen Code: Angesichts der folgenden Matrix a und Maske: Ich habe versucht Umsetzung der conv Befehl, aber ich erhalte einen Fehler. Hier ist der Befehl conv, den ich versucht habe, auf der 2. Spalte der Matrix a zu verwenden: Die Ausgabe, die ich wünsche, wird in der folgenden Matrix gegeben: Wenn Sie irgendwelche Vorschläge haben, würde ich es sehr schätzen. Vielen Dank für die Spalte 2 der Matrix a, ich bin die Berechnung der 3-Tage gleitenden Durchschnitt wie folgt und platziert das Ergebnis in Spalte 4 der Matrix a (Ich umbenannt Matrix a als 39desiredOutput39 nur für Abbildung). Der 3-tägige Durchschnitt von 17, 14, 11 ist 14 der dreitägige Durchschnitt von 14, 11, 8 ist 11 der 3-tägige Durchschnitt von 11, 8, 5 ist 8 und der 3-Tage-Durchschnitt von 8, 5, 2 ist 5. Es gibt keinen Wert in den unteren 2 Zeilen für die 4. Spalte, da die Berechnung für den dreitägigen gleitenden Durchschnitt am unteren Ende beginnt. Die 39valid39 Ausgabe wird nicht angezeigt werden, bis mindestens 17, 14 und 11. Hoffentlich macht dies Sinn ndash Aaron 12 August, In diesem Fall tun Sie zwei Dinge falsch: Zuerst muss Ihre Faltung durch drei (oder die Länge der gleitenden Durchschnitt) geteilt werden Zweitens beachten Sie die Größe von c. Sie können nicht einfach passen c in eine. Der typische Weg, um einen gleitenden Durchschnitt wäre, um die gleiche: aber das sieht nicht wie Sie wollen. Stattdessen sind Sie gezwungen, ein paar Zeilen zu verwenden:

Comments