Der Moving Average als Filter Der gleitende Durchschnitt wird oft für die Glättung von Daten in Anwesenheit von Rauschen verwendet. Der einfache gleitende Durchschnitt wird nicht immer als der Finite Impulse Response (FIR) - Filter erkannt, der es ist, während er tatsächlich einer der gebräuchlichsten Filter in der Signalverarbeitung ist. Wenn man sie als Filter betrachtet, kann man sie beispielsweise mit gefensterten Filtern vergleichen (siehe Artikel zu Tiefpaß-, Hochpass - und Bandpass - und Bandsperrfiltern für Beispiele). Der Hauptunterschied zu diesen Filtern besteht darin, daß der gleitende Durchschnitt für Signale geeignet ist, für die die Nutzinformation im Zeitbereich enthalten ist. Von denen Glättungsmessungen durch Mittelung ein Paradebeispiel sind. Window-sinc-Filter, auf der anderen Seite, sind starke Künstler im Frequenzbereich. Mit Ausgleich in der Audioverarbeitung als typisches Beispiel. Es gibt einen detaillierteren Vergleich beider Arten von Filtern in Time Domain vs. Frequency Domain Performance von Filtern. Wenn Sie Daten haben, für die sowohl die Zeit als auch die Frequenzdomäne wichtig sind, dann möchten Sie vielleicht einen Blick auf Variationen auf den Moving Average werfen. Die eine Anzahl gewichteter Versionen des gleitenden Durchschnitts zeigt, die besser sind. Der gleitende Durchschnitt der Länge (N) kann so definiert werden, wie er üblicherweise implementiert ist, wobei der aktuelle Ausgabeabtastwert der Durchschnitt der vorhergehenden (N) Abtastwerte ist. Als Filter betrachtet, führt der gleitende Durchschnitt eine Faltung der Eingangsfolge (xn) mit einem Rechteckpuls der Länge (N) und der Höhe (1 / N) durch (um den Bereich des Pulses und damit die Verstärkung von Der Filter, ein). In der Praxis ist es am besten, (N) ungerade zu nehmen. Obwohl ein gleitender Durchschnitt auch unter Verwendung einer geraden Anzahl von Abtastwerten berechnet werden kann, hat die Verwendung eines ungeradzahligen Wertes für (N) den Vorteil, daß die Verzögerung des Filters eine ganzzahlige Anzahl von Abtastwerten ist, da die Verzögerung eines Filters mit (N) Proben genau ist ((N-1) / 2). Der gleitende Durchschnitt kann dann exakt mit den ursprünglichen Daten ausgerichtet werden, indem er um eine ganze Zahl von Abtastwerten verschoben wird. Zeitdomäne Da der gleitende Durchschnitt eine Faltung mit einem rechteckigen Puls ist, ist sein Frequenzgang eine sinc-Funktion. Dies macht es ähnlich dem Dual des Fenstersynchronfilters, da es sich hierbei um eine Faltung mit einem Sinc-Puls handelt, der zu einem rechteckigen Frequenzgang führt. Es ist diese sinc Frequenzantwort, die den gleitenden Durchschnitt ein schlechter Darsteller im Frequenzbereich macht. Allerdings führt es sehr gut im Zeitbereich. Daher ist es perfekt, um Daten zu löschen, um Rauschen zu entfernen, während gleichzeitig eine schnelle Sprungantwort beibehalten wird (1). Für das typische Additiv-Weiß-Gauß-Rauschen (AWGN), das oft angenommen wird, hat die Mittelung (N) - Proben den Effekt, dass das SNR um einen Faktor von (sqrt N) erhöht wird. Da das Rauschen für die einzelnen Proben unkorreliert ist, gibt es keinen Grund, jede Probe unterschiedlich zu behandeln. Daher wird der gleitende Durchschnitt, der jeder Probe das gleiche Gewicht gibt, die maximale Menge an Rauschen für eine gegebene Sprungantwortschärfe beseitigen. Implementierung Da es sich um einen FIR-Filter handelt, kann der gleitende Durchschnitt durch Faltung implementiert werden. Es hat dann die gleiche Effizienz (oder das Fehlen davon) wie jedes andere FIR-Filter. Sie kann aber auch rekursiv und effizient umgesetzt werden. Es folgt unmittelbar aus der Definition, daß diese Formel das Ergebnis der Ausdrücke für (yn) und (yn1) ist, dh, daß die Veränderung zwischen (yn1) und (yn) einen zusätzlichen Term (xn1 / N) Erscheint am Ende, während der Term (xn-N1 / N) vom Anfang entfernt wird. In praktischen Anwendungen ist es oft möglich, die Division durch (N) für jeden Term auszulassen, indem die resultierende Verstärkung von (N) an einer anderen Stelle kompensiert wird. Diese rekursive Umsetzung wird viel schneller als Faltung. Jeder neue Wert von (y) kann mit nur zwei Additionen anstelle der (N) Additionen berechnet werden, die für eine einfache Implementierung der Definition erforderlich wären. Eine Sache, mit der Sie nach einer rekursiven Implementierung Ausschau halten, ist, dass Rundungsfehler akkumulieren. Dies kann ein Problem für Ihre Anwendung sein oder auch nicht, aber es bedeutet auch, dass diese rekursive Implementierung tatsächlich mit einer Integer-Implementierung besser funktionieren wird als mit Gleitkommazahlen. Dies ist sehr ungewöhnlich, da eine Gleitkomma-Implementierung gewöhnlich einfacher ist. Der Schluss davon muss sein, dass Sie die Nützlichkeit des einfachen gleitenden Durchschnittsfilters in Signalverarbeitungsanwendungen nie unterschätzen sollten. Filter Design Tool Dieser Artikel wird mit einem Filter Design Tool ergänzt. Experimentiere mit verschiedenen Werten für (N) und visualisiere die resultierenden Filter. Versuchen Sie es jetztThe Scientist and Engineers Guide to Digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Kapitel 14: Einführung in digitale Filter Hochpass-, Bandpass - und Bandsperrfilter Hochpass-, Bandpass - und Bandsperrfilter werden so entworfen, dass sie mit einem Tiefpaßfilter beginnen und es dann in die gewünschte Antwort umwandeln . Aus diesem Grund geben die meisten Diskussionen zum Filterdesign nur Beispiele für Tiefpaßfilter. Es gibt zwei Verfahren für die Tiefpass-Hochpaßumwandlung: spektrale Inversion und spektrale Umkehrung. Beide sind gleich nützlich. Ein Beispiel der spektralen Inversion ist in 14-5 gezeigt. Abbildung (a) zeigt einen Tiefpaßfilterkern, der als windowed-sinc bezeichnet wird (das Thema von Kapitel 16). Dieser Filterkernel hat eine Länge von 51 Punkten, obwohl viele der Samples einen so kleinen Wert haben, dass sie in diesem Graphen Null zu sein scheinen. Der entsprechende Frequenzgang wird in (b) gezeigt, gefunden durch Hinzufügen von 13 Nullen zum Filterkern und unter Verwendung einer 64-Punkt-FFT. Zwei Dinge müssen getan werden, um den Tiefpaßfilterkernel in einen Hochpaßfilterkernel zu ändern. Zuerst ändern Sie das Vorzeichen der einzelnen Samples im Filterkernel. Zweitens, fügen Sie eine zur Probe in der Mitte der Symmetrie. Dies führt zu dem in (c) gezeigten Hochpaßfilterkern mit dem in (d) gezeigten Frequenzgang. Spektrale Inversion spiegelt den Frequenzgang von oben nach unten. Ändern der Passbänder in Stoppbänder und der Stoppbänder in Passbänder. Mit anderen Worten, er ändert einen Filter von Tiefpaß zu Hochpaß, Hochpaß zu Tiefpaß, Bandpaß zu Bandspur oder Bandspur zu Bandpaß. Abbildung 14-6 zeigt, warum diese zweistufige Modifikation des Zeitbereichs zu einem invertierten Frequenzspektrum führt. In (a) wird das Eingangssignal x n parallel an zwei Systeme angelegt. Eines dieser Systeme ist ein Tiefpassfilter mit einer Impulsantwort, die durch h n gegeben ist. Das andere System tut nichts für das Signal und hat daher eine Impulsantwort, die eine Delta-Funktion ist, delta n. Der Gesamtausgang y n ist gleich dem Ausgang des Allpass-Systems minus dem Ausgang des Tiefpaßsystems. Da die niederfrequenten Komponenten von dem ursprünglichen Signal subtrahiert werden, erscheinen nur die hochfrequenten Komponenten in dem Ausgang. Somit wird ein Hochpaßfilter gebildet. Dies könnte als ein zweistufiger Vorgang in einem Computerprogramm ausgeführt werden: Durchlaufen des Signals durch ein Tiefpassfilter und dann Subtrahieren des gefilterten Signals von dem Original. Jedoch kann der gesamte Vorgang in einer Signalstufe durch Kombinieren der beiden Filterkerne durchgeführt werden. Wie in Kapitel 7 beschrieben, können parallele Systeme mit addierten Ausgängen durch Hinzufügen ihrer Impulsantworten zu einer einzigen Stufe kombiniert werden. Wie in (b) gezeigt, ist der Filterkernel für den Hochpassfilter gegeben durch: delta n - h n. Das heißt, ändern Sie das Vorzeichen aller Proben, und fügen Sie dann ein, um die Probe in der Mitte der Symmetrie. Damit diese Technik funktioniert, müssen die Niederfrequenzkomponenten, die aus dem Tiefpassfilter austreten, dieselbe Phase wie die Niederfrequenzkomponenten haben, die das Allpass-System verlassen. Andernfalls kann keine vollständige Subtraktion erfolgen. Dies stellt zwei Einschränkungen für das Verfahren dar: (1) Der ursprüngliche Filterkernel muß eine Links-Rechts-Symmetrie haben (d. h. eine Null - oder Linearphase), und (2) der Impuls muß in der Mitte der Symmetrie addiert werden. Das zweite Verfahren zur Tiefpaß - zu Hochpaßumwandlung, spektrale Umkehrung. Ist in Fig. 2 dargestellt. 14-7. Genau wie zuvor entspricht der Tiefpaßfilterkernel in (a) dem Frequenzgang in (b). Der Hochpaßfilterkernel (c) wird durch Ändern des Vorzeichens jeder zweiten Abtastung in (a) gebildet. Wie in (d) gezeigt, kippt dies den Frequenzbereich von links nach rechts. 0 zu 0,5 und 0,5 zu 0. Die Grenzfrequenz des Beispiel-Tiefpaßfilters beträgt 0,15, was dazu führt, daß die Grenzfrequenz des Hochpaßfilters 0,35 beträgt. Das Ändern des Vorzeichens jeder anderen Abtastung ist äquivalent zum Multiplizieren des Filterkerns mit einer Sinuskurve mit einer Frequenz von 0,5. Wie in Kapitel 10 erörtert, hat dies die Wirkung, den Frequenzbereich um 0,5 zu verschieben. Betrachten Sie (b) und stellen Sie sich die negativen Frequenzen zwischen -0,5 und 0 vor, die ein Spiegelbild der Frequenzen zwischen 0 und 0,5 sind. Die in (d) auftretenden Frequenzen sind die negativen Frequenzen von (b), die um 0,5 verschoben sind. Schließlich zeigen Fig. 14-8 und 14-9 zeigen, wie Tiefpaß - und Hochpaßfilterkerne zu Bandpass - und Bandsperrfiltern kombiniert werden können. Kurz gesagt, das Hinzufügen der Filterkerne erzeugt ein Bandsperrfilter, während das Zusammenfalten der Filterkerne ein Bandpaßfilter erzeugt. Diese basieren auf der Art und Weise, wie kaskadierte und parallele Systeme kombiniert werden, wie in Kapitel 7 diskutiert wird. Es können auch mehrere Kombinationen dieser Techniken verwendet werden. Zum Beispiel kann ein Bandpassfilter konstruiert werden, indem die beiden Filterkerne zu einem Bandpaßfilter addiert werden und dann eine spektrale Inversion oder spektrale Umkehrung, wie zuvor beschrieben, verwendet werden. Alle diese Techniken arbeiten sehr gut mit wenigen Überraschungen. Ich brauche, um einen gleitenden Durchschnitt Filter, der eine Cut-off-Frequenz von 7,8 Hz. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall verwenden Frequenzbereich Filter ndash user19373 Feb 3 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang ist Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Größenreaktion des Filters H (Omega). Mit ein paar einfachen Handgriffen können wir, dass in einer leichter zu begreifen Form erhalten: Das ist nicht aussehen kann leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Begriffe aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Ff / fs: Der umgekehrte Wert dieser Formel ist für große N asymptotisch korrekt und hat ungefähr 2-Fehler für N2 und weniger als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 liefert die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpassfilters (Einpol-LPF) mit einer gegebenen -3dB-Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). Tatsächlich haben sowohl der MA und der 1. Ordnung IIR LPF -20dB / Dekade Slope im Stop-Band (man braucht ein größeres N als das, das in der Figur verwendet wird, N32, um dies zu sehen), während aber MA spektrale Nullen bei Fk hat / N und einer 1 / f-Evelope hat das IIR-Filter nur ein 1 / f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stoppbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basiert auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN / 2) / Sin (Omega / 2) Omega 2piF MA (F) ca. N1 / 6F2 (N-N3) pi2. Und Ableitung der Kreuzung mit 1 / sqrt von dort. Ndash Massimo 17 Januar um 2: 08Smoothing Smoothing entfernt kurzfristige Variationen, oder quotnoisequot, um die wichtige zugrunde liegende unverfälschte Form der Daten zu enthüllen. Igoracutes Smooth Betrieb führt Box, quotbinomialquot, und Savitzky-Golay Glättung. Die verschiedenen Glättungsalgorithmen falten die Eingangsdaten mit unterschiedlichen Koeffizienten. Glättung ist eine Art Tiefpassfilter. Die Art der Glättung und die Menge der Glättung verändert den Filterfrequenz-Frequenzgang: Moving Average (auch bekannt als Box Smoothing) Die einfachste Form der Glättung ist der mittlere Mittelwert, der einfach jeden Datenwert durch den Durchschnitt der benachbarten Werte ersetzt. Um ein Verschieben der Daten zu vermeiden, empfiehlt es sich, die gleiche Anzahl von Werten vor und nach dem Durchschnittswert zu berechnen. In der Gleichung wird der gleitende Durchschnitt folgendermaßen berechnet: Ein anderer Begriff für diese Art der Glättung ist ein quoteschleifendes Durchschnittsquot, ein Quotschloß-Glättungsquot oder ein Quottend-Glättungsquot. Sie kann durch Falten der Eingangsdaten mit einem kastenförmigen Impuls mit 2M1 Werten, die alle gleich 1 / (2M1) sind, implementiert werden. Wir nennen diese Werte die quotcoefficientsquot der quotsmoothing kernelquot: Binomiale Glättung Die binomische Glättung ist ein Gaußscher Filter. Es faltet Ihre Daten mit normalisierten Koeffizienten aus Pascalacutes Dreieck auf einem Niveau gleich dem Glättungsparameter abgeleitet. Der Algorithmus stammt aus einem Artikel von Marchand und Marmet (1983). Savitzky-Golay Glättung Die Savitzky-Golay-Glättung nutzt einen anderen Satz von vorberechneten Koeffizienten, die auf dem Gebiet der Chemie populär sind. Es ist eine Art von Least Squares Polynom Glättung. Der Betrag der Glättung wird durch zwei Parameter gesteuert: die Polynomordnung und die Anzahl der Punkte, die verwendet werden, um jeden geglätteten Ausgangswert zu berechnen. Referenzen Marchand, P. und L. Marmet, Binomialer Glättungsfilter: Ein Weg, um einige Fallstricke der kleinsten quadratischen Polynomglättung zu vermeiden, Rev. Sci. Instrument . 54. 1034-41, 1983. Savitzky, A. und M. J.E. Golay, Glättung und Differenzierung von Daten durch vereinfachte Verfahren der kleinsten Fehlerquadrate, Analytische Chemie. 36. 1627-1639, 1964.Moving-Mittelwerte - Einfache und exponentielle Bewegungsdurchschnitte - Einfache und exponentielle Einführung Die gleitenden Mittelwerte glatten die Preisdaten, um einen Trendfolgerindikator zu bilden. Sie prognostizieren nicht die Kursrichtung, sondern definieren die aktuelle Richtung mit einer Verzögerung. Moving Averages Lag, weil sie auf vergangenen Preisen basieren. Trotz dieser Verzögerung, gleitende Durchschnitte helfen, glatte Preis-Aktion und Filter aus dem Lärm. Sie bilden auch die Bausteine für viele andere technische Indikatoren und Overlays, wie Bollinger Bands. MACD und dem McClellan-Oszillator. Die beiden beliebtesten Arten von gleitenden Durchschnitten sind die Simple Moving Average (SMA) und die Exponential Moving Average (EMA). Diese Bewegungsdurchschnitte können verwendet werden, um die Richtung des Trends zu identifizieren oder potentielle Unterstützungs - und Widerstandswerte zu definieren. Here039s ein Diagramm mit einem SMA und einem EMA auf ihm: Einfache gleitende durchschnittliche Berechnung Ein einfacher gleitender Durchschnitt wird gebildet, indem man den durchschnittlichen Preis eines Wertpapiers über einer bestimmten Anzahl von Perioden berechnet. Die meisten gleitenden Mittelwerte basieren auf den Schlusskursen. Ein 5-tägiger einfacher gleitender Durchschnitt ist die fünftägige Summe der Schlusskurse geteilt durch fünf. Wie der Name schon sagt, ist ein gleitender Durchschnitt ein Durchschnitt, der sich bewegt. Alte Daten werden gelöscht, wenn neue Daten verfügbar sind. Dies bewirkt, dass sich der Durchschnitt entlang der Zeitskala bewegt. Unten ist ein Beispiel für einen 5-tägigen gleitenden Durchschnitt, der sich über drei Tage entwickelt. Der erste Tag des gleitenden Durchschnitts deckt nur die letzten fünf Tage ab. Der zweite Tag des gleitenden Mittelwerts fällt den ersten Datenpunkt (11) und fügt den neuen Datenpunkt (16) hinzu. Der dritte Tag des gleitenden Durchschnitts setzt sich fort, indem der erste Datenpunkt (12) abfällt und der neue Datenpunkt (17) addiert wird. Im obigen Beispiel steigen die Preise allmählich von 11 auf 17 über insgesamt sieben Tage. Beachten Sie, dass der gleitende Durchschnitt auch von 13 auf 15 über einen dreitägigen Berechnungszeitraum steigt. Beachten Sie auch, dass jeder gleitende Durchschnittswert knapp unter dem letzten Kurs liegt. Zum Beispiel ist der gleitende Durchschnitt für Tag eins gleich 13 und der letzte Preis ist 15. Preise der vorherigen vier Tage waren niedriger und dies führt dazu, dass der gleitende Durchschnitt zu verzögern. Exponentielle gleitende Durchschnittsberechnung Exponentielle gleitende Mittelwerte reduzieren die Verzögerung, indem mehr Gewicht auf die jüngsten Preise angewendet wird. Die Gewichtung des jüngsten Preises hängt von der Anzahl der Perioden im gleitenden Durchschnitt ab. Es gibt drei Schritte, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Berechnen Sie zunächst den einfachen gleitenden Durchschnitt. Ein exponentieller gleitender Durchschnitt (EMA) muss irgendwo anfangen, so dass ein einfacher gleitender Durchschnitt als die vorherige Periode039s EMA in der ersten Berechnung verwendet wird. Zweitens, berechnen Sie die Gewichtung Multiplikator. Drittens berechnen Sie den exponentiellen gleitenden Durchschnitt. Die folgende Formel ist für eine 10-tägige EMA. Ein 10-Perioden-exponentieller gleitender Durchschnitt wendet eine 18,18 Gewichtung auf den jüngsten Preis an. Eine 10-Perioden-EMA kann auch als 18.18 EMA bezeichnet werden. Ein 20-Perioden-EMA wendet einen 9,52 - Wiegen auf den jüngsten Preis an (2 / (201) .0952). Beachten Sie, dass die Gewichtung für den kürzeren Zeitraum mehr ist als die Gewichtung für den längeren Zeitraum. In der Tat, die Gewichtung sinkt um die Hälfte jedes Mal, wenn die gleitende durchschnittliche Periode verdoppelt. Wenn Sie uns einen bestimmten Prozentsatz für eine EMA zuweisen möchten, können Sie diese Formel verwenden, um sie in Zeiträume zu konvertieren, und geben Sie dann diesen Wert als den EMA039s-Parameter ein: Nachstehend ist ein Kalkulationstabellenbeispiel für einen 10-tägigen einfachen gleitenden Durchschnitt und ein 10- Tag exponentiellen gleitenden Durchschnitt für Intel. Einfache gleitende Durchschnitte sind geradlinig und erfordern wenig Erklärung. Der 10-Tage-Durchschnitt bewegt sich einfach, sobald neue Preise verfügbar sind und alte Preise fallen. Der exponentielle gleitende Durchschnitt beginnt mit dem einfachen gleitenden Mittelwert (22.22) bei der ersten Berechnung. Nach der ersten Berechnung übernimmt die Normalformel. Da eine EMA mit einem einfachen gleitenden Durchschnitt beginnt, wird ihr wahrer Wert erst nach 20 oder späteren Perioden realisiert. Mit anderen Worten, der Wert auf der Excel-Tabelle kann sich aufgrund des kurzen Rückblicks von dem Diagrammwert unterscheiden. Diese Kalkulationstabelle geht nur zurück 30 Perioden, was bedeutet, dass der Einfluss der einfachen gleitenden Durchschnitt hatte 20 Perioden zu zerstreuen. StockCharts geht mindestens 250 Perioden (typischerweise viel weiter) für seine Berechnungen zurück, so dass die Effekte des einfachen gleitenden Durchschnitts in der ersten Berechnung vollständig abgebaut sind. Der Lagfaktor Je länger der gleitende Durchschnitt ist, desto stärker ist die Verzögerung. Ein 10-Tage-exponentieller gleitender Durchschnitt wird die Preise sehr eng umringen und sich kurz nach dem Kursumschlag wenden. Kurze gleitende Durchschnitte sind wie Schnellboote - flink und schnell zu ändern. Im Gegensatz dazu enthält ein 100-Tage gleitender Durchschnitt viele vergangene Daten, die ihn verlangsamen. Längere gleitende Durchschnitte sind wie Ozeantanker - lethargisch und langsam zu ändern. Es dauert eine größere und längere Kursbewegung für einen 100-Tage gleitenden Durchschnitt, um Kurs zu ändern. Die Grafik oben zeigt die SampP 500 ETF mit einer 10-tägigen EMA eng ansprechender Preise und einem 100-tägigen SMA-Schleifen höher. Selbst mit dem Januar-Februar-Rückgang hielt die 100-tägige SMA den Kurs und kehrte nicht zurück. Die 50-Tage-SMA passt irgendwo zwischen den 10 und 100 Tage gleitenden Durchschnitten, wenn es um den Verzögerungsfaktor kommt. Simple vs Exponential Moving Averages Obwohl es klare Unterschiede zwischen einfachen gleitenden Durchschnitten und exponentiellen gleitenden Durchschnitten, ist eine nicht unbedingt besser als die anderen. Exponentielle gleitende Mittelwerte haben weniger Verzögerungen und sind daher empfindlicher gegenüber den jüngsten Preisen - und den jüngsten Preisveränderungen. Exponentielle gleitende Mittelwerte drehen sich vor einfachen gleitenden Durchschnitten. Einfache gleitende Durchschnitte stellen dagegen einen wahren Durchschnittspreis für den gesamten Zeitraum dar. Als solches können einfache gleitende Mittel besser geeignet sein, um Unterstützungs - oder Widerstandsniveaus zu identifizieren. Die gleitende Durchschnittspräferenz hängt von den Zielen, dem analytischen Stil und dem Zeithorizont ab. Chartisten sollten mit beiden Arten von gleitenden Durchschnitten sowie verschiedene Zeitrahmen zu experimentieren, um die beste Passform zu finden. Die nachstehende Grafik zeigt IBM mit der 50-Tage-SMA in Rot und der 50-Tage-EMA in Grün. Beide gipfelten Ende Januar, aber der Rückgang in der EMA war schärfer als der Rückgang der SMA. Die EMA erschien Mitte Februar, aber die SMA setzte weiter unten bis Ende März. Beachten Sie, dass die SMA über einen Monat nach der EMA. Längen und Zeitrahmen Die Länge des gleitenden Mittelwerts hängt von den analytischen Zielen ab. Kurze gleitende Durchschnitte (5-20 Perioden) eignen sich am besten für kurzfristige Trends und den Handel. Chartisten, die sich für mittelfristige Trends interessieren, würden sich für längere bewegte Durchschnitte entscheiden, die 20-60 Perioden verlängern könnten. Langfristige Anleger bevorzugen gleitende Durchschnitte mit 100 oder mehr Perioden. Einige gleitende durchschnittliche Längen sind beliebter als andere. Die 200-Tage gleitenden Durchschnitt ist vielleicht die beliebteste. Wegen ihrer Länge ist dies eindeutig ein langfristiger gleitender Durchschnitt. Als nächstes ist der 50-Tage gleitende Durchschnitt für den mittelfristigen Trend ziemlich populär. Viele Chartisten nutzen die 50-Tage-und 200-Tage gleitende Durchschnitte zusammen. Kurzfristig war ein 10 Tage gleitender Durchschnitt in der Vergangenheit ziemlich populär, weil er leicht zu berechnen war. Man hat einfach die Zahlen addiert und den Dezimalpunkt verschoben. Trendidentifikation Die gleichen Signale können mit einfachen oder exponentiellen gleitenden Mittelwerten erzeugt werden. Wie oben erwähnt, hängt die Präferenz von jedem Individuum ab. Die folgenden Beispiele werden sowohl einfache als auch exponentielle gleitende Mittelwerte verwenden. Der Begriff gleitender Durchschnitt gilt für einfache und exponentielle gleitende Mittelwerte. Die Richtung des gleitenden Durchschnitts vermittelt wichtige Informationen über die Preise. Ein steigender Durchschnitt zeigt, dass die Preise im Allgemeinen steigen. Ein sinkender Durchschnittswert zeigt an, dass die Preise im Durchschnitt sinken. Ein steigender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Aufwärtstrend wider. Ein sinkender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Abwärtstrend wider. Das Diagramm oben zeigt 3M (MMM) mit einem 150-Tage-exponentiellen gleitenden Durchschnitt. Dieses Beispiel zeigt, wie gut bewegte Durchschnitte arbeiten, wenn der Trend stark ist. Die 150-Tage-EMA sank im November 2007 und wieder im Januar 2008. Beachten Sie, dass es einen Rückgang von 15 nahm, um die Richtung dieses gleitenden Durchschnitts umzukehren. Diese nachlaufenden Indikatoren identifizieren Trendumkehrungen, wie sie auftreten (am besten) oder nach deren Eintritt (im schlimmsten Fall). MMM setzte unten in März 2009 und dann stieg 40-50. Beachten Sie, dass die 150-Tage-EMA nicht auftauchte, bis nach diesem Anstieg. Sobald es aber tat, setzte MMM die folgenden 12 Monate höher fort. Moving-Durchschnitte arbeiten brillant in starken Trends. Doppelte Frequenzweichen Zwei gleitende Mittelwerte können zusammen verwendet werden, um Frequenzweiche zu erzeugen. In der technischen Analyse der Finanzmärkte. John Murphy nennt dies die doppelte Crossover-Methode. Doppelte Crossover beinhalten einen relativ kurzen gleitenden Durchschnitt und einen relativ langen gleitenden Durchschnitt. Wie bei allen gleitenden Durchschnitten definiert die allgemeine Länge des gleitenden Durchschnitts den Zeitrahmen für das System. Ein System, das eine 5-Tage-EMA und eine 35-Tage-EMA verwendet, wäre kurzfristig. Ein System, das eine 50-tägige SMA - und 200-Tage-SMA verwendet, wäre mittelfristig, vielleicht sogar langfristig. Eine bullische Überkreuzung tritt auf, wenn der kürzere gleitende Durchschnitt über dem längeren gleitenden Durchschnitt kreuzt. Dies wird auch als goldenes Kreuz bezeichnet. Eine bärische Überkreuzung tritt ein, wenn der kürzere gleitende Durchschnitt unter dem längeren gleitenden Durchschnitt liegt. Dies wird als ein totes Kreuz bekannt. Gleitende Mittelübergänge erzeugen relativ späte Signale. Schließlich setzt das System zwei hintere Indikatoren ein. Je länger die gleitenden Durchschnittsperioden, desto größer die Verzögerung in den Signalen. Diese Signale funktionieren gut, wenn eine gute Tendenz gilt. Allerdings wird ein gleitender Durchschnitt Crossover-System produzieren viele whipsaws in Abwesenheit einer starken Tendenz. Es gibt auch eine Dreifach-Crossover-Methode, die drei gleitende Durchschnitte beinhaltet. Wieder wird ein Signal erzeugt, wenn der kürzeste gleitende Durchschnitt die beiden längeren Mittelwerte durchläuft. Ein einfaches Triple-Crossover-System könnte 5-Tage-, 10-Tage - und 20-Tage-Bewegungsdurchschnitte beinhalten. Das Diagramm oben zeigt Home Depot (HD) mit einer 10-tägigen EMA (grüne gepunktete Linie) und 50-Tage-EMA (rote Linie). Die schwarze Linie ist die tägliche Schließung. Mit einem gleitenden Durchschnitt Crossover hätte dazu geführt, dass drei Peitschen vor dem Fang eines guten Handels. Die 10-tägige EMA brach unterhalb der 50-Tage-EMA Ende Oktober (1), aber dies dauerte nicht lange, wie die 10-Tage zog zurück oben Mitte November (2). Dieses Kreuz dauerte länger, aber die nächste bärige Crossover im Januar (3) ereignete sich gegen Ende November Preisniveaus, was zu einer weiteren Peitsche führte. Dieses bärische Kreuz dauerte nicht lange, als die 10-Tage-EMA über die 50-Tage ein paar Tage später zurückging (4). Nach drei schlechten Signalen, schien das vierte Signal eine starke Bewegung als die Aktie vorrückte über 20. Es gibt zwei Takeaways hier. Erstens, Crossovers sind anfällig für whipsaw. Ein Preis oder Zeitfilter kann angewendet werden, um zu helfen, whipsaws zu verhindern. Händler könnten verlangen, dass die Crossover 3 Tage dauern, bevor sie handeln oder verlangen, dass die 10-Tage-EMA zu bewegen, über / unterhalb der 50-Tage-EMA um einen bestimmten Betrag vor handeln. Zweitens kann MACD verwendet werden, um diese Frequenzweichen zu identifizieren und zu quantifizieren. MACD (10,50,1) zeigt eine Linie, die die Differenz zwischen den beiden exponentiellen gleitenden Mittelwerten darstellt. MACD wird positiv während eines goldenen Kreuzes und negativ während eines toten Kreuzes. Der Prozentsatz-Oszillator (PPO) kann auf die gleiche Weise verwendet werden, um Prozentunterschiede anzuzeigen. Beachten Sie, dass MACD und das PPO auf exponentiellen gleitenden Durchschnitten basieren und nicht mit einfachen gleitenden Durchschnitten zusammenpassen. Diese Grafik zeigt Oracle (ORCL) mit dem 50-Tage EMA, 200-Tage EMA und MACD (50.200,1). Es gab vier gleitende durchschnittliche Kreuzungen über einen Zeitraum von 2 1/2 Jahren. Die ersten drei führten zu Peitschen oder schlechten Trades. Ein anhaltender Trend begann mit der vierten Crossover als ORCL bis Mitte der 20er Jahre. Erneut bewegen sich die durchschnittlichen Crossover-Effekte groß, wenn der Trend stark ist, erzeugen aber Verluste in Abwesenheit eines Trends. Preis-Crossover Moving-Durchschnitte können auch verwendet werden, um Signale mit einfachen Preis-Crossover zu generieren. Ein bullisches Signal wird erzeugt, wenn die Preise über dem gleitenden Durchschnitt liegen. Ein bäres Signal wird erzeugt, wenn die Preise unter dem gleitenden Durchschnitt liegen. Preis-Crossover können kombiniert werden, um innerhalb der größeren Trend Handel. Der längere gleitende Durchschnitt setzt den Ton für den größeren Trend und der kürzere gleitende Durchschnitt wird verwendet, um die Signale zu erzeugen. Man würde bullish Preiskreuze nur dann suchen, wenn die Preise schon über dem längeren gleitenden Durchschnitt liegen. Dies würde den Handel im Einklang mit dem größeren Trend. Wenn zum Beispiel der Kurs über dem gleitenden 200-Tage-Durchschnitt liegt, würden sich die Chartisten nur auf Signale konzentrieren, wenn der Kurs über dem 50-Tage-Gleitender Durchschnitt liegt. Offensichtlich würde ein Schritt unterhalb der 50-Tage gleitenden Durchschnitt ein solches Signal vorausgehen, aber solche bearish Kreuze würden ignoriert, weil der größere Trend ist. Ein bearish Kreuz würde einfach vorschlagen, ein Pullback in einem größeren Aufwärtstrend. Ein Cross-Back über dem 50-Tage-Gleitender Durchschnitt würde einen Preisanstieg und eine Fortsetzung des größeren Aufwärtstrends signalisieren. Die nächste Tabelle zeigt Emerson Electric (EMR) mit dem 50-Tage EMA und 200-Tage EMA. Die Aktie bewegte sich über und hielt über dem 200-Tage gleitenden Durchschnitt im August. Es gab Dips unterhalb der 50-Tage-EMA Anfang November und wieder Anfang Februar. Die Preise schnell zurück über die 50-Tage-EMA zu bullish Signale (grüne Pfeile) in Harmonie mit dem größeren Aufwärtstrend. Im Indikatorfenster wird MACD (1,50,1) angezeigt, um Preiskreuze über oder unter dem 50-Tage-EMA zu bestätigen. Die 1-tägige EMA entspricht dem Schlusskurs. MACD (1,50,1) ist positiv, wenn das Schließen oberhalb der 50-Tage-EMA und negativ ist, wenn das Schließen unterhalb der 50-Tage-EMA liegt. Unterstützung und Widerstand Der Gleitende Durchschnitt kann auch als Unterstützung in einem Aufwärtstrend und Widerstand in einem Abwärtstrend dienen. Ein kurzfristiger Aufwärtstrend könnte Unterstützung nahe dem 20-tägigen einfachen gleitenden Durchschnitt finden, der auch in Bollinger-Bändern verwendet wird. Ein langfristiger Aufwärtstrend könnte Unterstützung nahe dem 200-tägigen einfachen gleitenden Durchschnitt finden, der der populärste langfristige bewegliche Durchschnitt ist. Wenn Tatsache, die 200-Tage gleitenden Durchschnitt bieten kann Unterstützung oder Widerstand, nur weil es so weit verbreitet ist. Es ist fast wie eine sich selbst erfüllende Prophezeiung. Die Grafik oben zeigt die NY Composite mit dem 200-Tage einfachen gleitenden Durchschnitt von Mitte 2004 bis Ende 2008. Die 200-Tage-Support zur Verfügung gestellt, mehrmals während des Vorhabens. Sobald der Trend mit einem Doppel-Top-Support-Pause umgekehrt, der 200-Tage gleitenden Durchschnitt als Widerstand um 9500 gehandelt. Erwarten Sie nicht genaue Unterstützung und Widerstand Ebenen von gleitenden Durchschnitten, vor allem längeren gleitenden Durchschnitten. Märkte werden durch Emotionen gefahren, wodurch sie anfällig für Überschreitungen sind. Statt genauer Ebenen können gleitende Mittelwerte verwendet werden, um Unterstützungs - oder Widerstandszonen zu identifizieren. Schlussfolgerungen Die Vorteile der Verwendung von bewegten Durchschnitten müssen gegen die Nachteile gewogen werden. Moving-Durchschnitte sind Trend nach, oder nacheilende, Indikatoren, die immer einen Schritt hinter sich. Dies ist nicht unbedingt eine schlechte Sache. Immerhin ist der Trend ist dein Freund und es ist am besten, in die Richtung des Trends Handel. Die gleitenden Durchschnitte gewährleisten, dass ein Händler dem aktuellen Trend entspricht. Auch wenn der Trend ist dein Freund, verbringen die Wertpapiere viel Zeit in Handelsspannen, die gleitende Durchschnitte ineffektiv machen. Einmal in einem Trend, bewegte Durchschnitte halten Sie in, sondern geben auch späte Signale. Don039t erwarten, an der Spitze zu verkaufen und kaufen Sie am unteren Rand mit gleitenden Durchschnitten. Wie bei den meisten technischen Analysetools sollten die gleitenden Mittelwerte nicht allein verwendet werden, sondern in Verbindung mit anderen komplementären Tools. Chartisten können gleitende Durchschnitte verwenden, um den Gesamttrend zu definieren und dann RSI zu verwenden, um überkaufte oder überverkaufte Niveaus zu definieren. Hinzufügen von Bewegungsdurchschnitten zu StockCharts Diagrammen Gleitende Durchschnitte sind als Preisüberlagerungsfunktion auf der SharpCharts-Workbench verfügbar. Mit dem Dropdown-Menü Overlays können Benutzer entweder einen einfachen gleitenden Durchschnitt oder einen exponentiellen gleitenden Durchschnitt auswählen. Der erste Parameter wird verwendet, um die Anzahl der Zeitperioden einzustellen. Ein optionaler Parameter kann hinzugefügt werden, um festzulegen, welches Preisfeld in den Berechnungen verwendet werden soll - O für die Open, H für High, L für Low und C für Close. Ein Komma wird verwendet, um Parameter zu trennen. Ein weiterer optionaler Parameter kann hinzugefügt werden, um die gleitenden Mittelwerte nach links (vorbei) oder nach rechts (zukünftig) zu verschieben. Eine negative Zahl (-10) würde den gleitenden Durchschnitt auf die linken 10 Perioden verschieben. Eine positive Zahl (10) würde den gleitenden Durchschnitt auf die rechten 10 Perioden verschieben. Mehrere gleitende Durchschnitte können dem Preisplot überlagert werden, indem einfach eine weitere Überlagerungslinie zur Werkbank hinzugefügt wird. StockCharts-Mitglieder können die Farben und den Stil ändern, um zwischen mehreren gleitenden Durchschnitten zu unterscheiden. Nachdem Sie eine Anzeige ausgewählt haben, öffnen Sie die erweiterten Optionen, indem Sie auf das kleine grüne Dreieck klicken. Erweiterte Optionen können auch verwendet werden, um eine gleitende mittlere Überlagerung zu anderen technischen Indikatoren wie RSI, CCI und Volumen hinzuzufügen. Klicken Sie hier für ein Live-Diagramm mit mehreren verschiedenen gleitenden Durchschnitten. Verwenden von Moving Averages mit StockCharts-Scans Hier finden Sie einige Beispielscans, die die StockCharts-Mitglieder verwenden können, um verschiedene gleitende durchschnittliche Situationen zu scannen: Bullish Moving Average Cross: Diese Scans suchen nach Aktien mit einem steigenden 150-Tage-Durchschnitt und einem bullish Kreuz der 5 Tag EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt steigt, solange er über seinem Niveau vor fünf Tagen handelt. Ein bullish Kreuz tritt auf, wenn die 5-Tage-EMA bewegt sich über dem 35-Tage-EMA auf überdurchschnittlichen Volumen. Bearish Moving Average Cross: Diese Scans sucht nach Aktien mit einem fallenden 150-Tage einfachen gleitenden Durchschnitt und einem bärischen Kreuz der 5-Tage EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt fällt, solange er unter seinem Niveau vor fünf Tagen handelt. Ein bäriges Kreuz tritt auf, wenn die 5-Tage-EMA unterhalb der 35-Tage-EMA auf überdurchschnittlichem Volumen bewegt. Weitere Studie John Murphy039s Buch hat ein Kapitel gewidmet gleitende Durchschnitte und ihre verschiedenen Verwendungen. Murphy deckt die Vor-und Nachteile der gleitenden Durchschnitte. Darüber hinaus zeigt Murphy, wie bewegte Durchschnitte mit Bollinger Bands und kanalbasierten Handelssystemen funktionieren. Technische Analyse der Finanzmärkte John Murphy
Comments
Post a Comment